GINNet 2.5.2 JavaDoc

All Packages Data packages GUI packages Other Packages 
Package Description
fr.loria.cortex.ginnet.data
Data management, save, import and export.
fr.loria.cortex.ginnet.data.signal
EEG signals treatments.
fr.loria.cortex.ginnet.dynnet.corpus
Corpus are datas ready to be treated.
fr.loria.cortex.ginnet.dynnet.corpus.filter
Corpus filters.
fr.loria.cortex.ginnet.dynnet.corpus.patterns
Patterns contain classes that describe an Attribute and a set of interfaces determining how to use patterns.
fr.loria.cortex.ginnet.dynnet.corpus.patterns.impl
Concrete implementations of patterns interfaces.
fr.loria.cortex.ginnet.dynnet.metalearners
Meta-learners are groups of supervised models able to learn how to learn and have better results than simple learners.
fr.loria.cortex.ginnet.dynnet.metalearners.combiners
Package combiners regroups re-usable combiners.
fr.loria.cortex.ginnet.dynnet.metalearners.models.arcing
Arcing algorithm implementations.
fr.loria.cortex.ginnet.dynnet.metalearners.models.bagging
Bagging algorithm implementations.
fr.loria.cortex.ginnet.dynnet.metalearners.models.boosting
Boosting algorithm implementation.
fr.loria.cortex.ginnet.dynnet.metalearners.samplers
Package samplers regroups re-usable samplers.
fr.loria.cortex.ginnet.dynnet.methods
Methods describes the hierarchy of data-mining methods of GINNet.
fr.loria.cortex.ginnet.dynnet.methods.entries
Entries are patterns more easily manipulable than corpuses.
fr.loria.cortex.ginnet.dynnet.methods.management
Manages methods feature selection.
fr.loria.cortex.ginnet.dynnet.methods.management.wrapper
Wrappers.
fr.loria.cortex.ginnet.dynnet.methods.stoppingfunctions
Stopping functions are used to determine when a stoppable data-mining method should stop learning.
fr.loria.cortex.ginnet.dynnet.neuralnetworks
All neural networks basic classes.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.competitivenetworks
Unsupervised networks doesn't work by teaching (correspondance between desired output and computed output) but by data organization.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.competitivenetworks.aggregatingfunctions  
fr.loria.cortex.ginnet.dynnet.neuralnetworks.competitivenetworks.distancefunctions  
fr.loria.cortex.ginnet.dynnet.neuralnetworks.learningratefunctions
Learning rate functions determines how to update the learning rate of the network while learning.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.models.gng
Growing Neural Gas networks.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.models.kmeans
KMeans algorithm implementation.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.models.kohonen
Kohonen self-organizing maps.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.models.kohonen.kernelfunctions
Kernel functions determine the nodes to move with the winner in Kohonen networks.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.models.kohonen.topologyfunctions
Topology functions etermine the distances between nodes and winner nodes in Kohonen networks.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.models.neuralgas
Neural gas networks.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.models.perceptron
Simple and multi-layer Perceptron network.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.models.tom
Temporal Organization Map spatio-temporal grid.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.supervisednetworks
Supervised network contain all information relative to non supervised networks.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.supervisednetworks.embedded
Embedded methods for supervised networks.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.supervisednetworks.embedded.evaluationcriteria
Evaluation criteria available for embedded pruning methods.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.supervisednetworks.errorfunctions
Error functions compute network mean error for a cycle.
fr.loria.cortex.ginnet.dynnet.neuralnetworks.supervisednetworks.transfertfunctions
Transfert functions determine the output of units according to their inputs.
fr.loria.cortex.ginnet.dynnet.trees
Decision trees.
fr.loria.cortex.ginnet.dynnet.trees.informationfunctions
Information functions relatives to any decision tree.
fr.loria.cortex.ginnet.dynnet.trees.models
models package regroups all decision tree concrete models.
fr.loria.cortex.ginnet.dynnet.utils
utils package regroups all utilitees usable by DynNet or GINNet.
fr.loria.cortex.ginnet.dynnet.utils.charts  
fr.loria.cortex.ginnet.dynnet.utils.criteriastrategy
criteriastrategy is the root package for evaluation and stopping criterion.
This criteria are used for feature selection.
fr.loria.cortex.ginnet.dynnet.utils.criteriastrategy.evaluationcriteria
evaluationcriteria package contains all evaluation's criteria usable for feature selection.
fr.loria.cortex.ginnet.dynnet.utils.criteriastrategy.stoppingcriteria
stoppingcriteria package contains all stopping's criteria usable for feature selection.
fr.loria.cortex.ginnet.dynnet.utils.math
math package regroups all mathematical utilitees usable by DynNet or GINNet.
This includes vector and matrix operation, and statistical fonction.
fr.loria.cortex.ginnet.dynnet.utils.modelfromdynnetcreation
This packages regroups all classes and files needed to generate Jar file from a DataMining model.
fr.loria.cortex.ginnet.dynnet.utils.preferences
preferences package concerns all DynNet (and GINNet) saved preferences.
fr.loria.cortex.ginnet.dynnet.utils.results
results package regroups classes intended to format results in HTML.
fr.loria.cortex.ginnet.dynnet.utils.strategy
Strategy design pattern allow to propose several concrete strategies to implement a computation.
fr.loria.cortex.ginnet.dynnet.utils.task
Long task is used to display task advancing (message and progress).
fr.loria.cortex.ginnet.gui
The Graphical User Interface for the DynNet library.
fr.loria.cortex.ginnet.gui.commandpanels
Command panels are panels displayed in the bottom of the frame.
fr.loria.cortex.ginnet.gui.commandpanels.networkcommandpanels
Corpus exporters are dialog interfaces that create networks.
fr.loria.cortex.ginnet.gui.corpusexporters
All the command panels used to export data to corpus.
fr.loria.cortex.ginnet.gui.data
All classes relative to data tab.
fr.loria.cortex.ginnet.gui.dialogs
All kind of dialogs.
fr.loria.cortex.ginnet.gui.dialogs.featureselection  
fr.loria.cortex.ginnet.gui.dialogs.networkdialogs
Dialog for network creations.
fr.loria.cortex.ginnet.gui.dialogs.networkdialogs.subpanels
Panels used by network dialogs.
fr.loria.cortex.ginnet.gui.dialogs.patterns  
fr.loria.cortex.ginnet.gui.dialogs.preferences
GUI elements used to watch and edit GINNet preferences.
fr.loria.cortex.ginnet.gui.graphs
All graphs.
fr.loria.cortex.ginnet.gui.help
Elements used for graphical help.
fr.loria.cortex.ginnet.gui.jarexporting  
fr.loria.cortex.ginnet.gui.strategypanels
Strategy panels allow dynamical interface that automatically create interfaces for several implementation of strategies.
fr.loria.cortex.ginnet.gui.tablemodels
All table models.
fr.loria.cortex.ginnet.gui.tabs
All GINNet tabs : Data, Stats, Corpus, Network and Tree.
fr.loria.cortex.ginnet.gui.tabs.network  
fr.loria.cortex.ginnet.gui.tabs.stats  
fr.loria.cortex.ginnet.gui.visitor
Neural network visitors used in GUI.
fr.loria.cortex.ginnet.gui.visitor.metalearning
Meta-learner GUI is displayed by MetaLearnerGUIVisitor and its relative classes.
fr.loria.cortex.ginnet.gui.visitor.metalearning.combining
Combiner sub-components of meta-learner GUI.
fr.loria.cortex.ginnet.gui.visitor.metalearning.resulting
Result sub-component of meta-learner GUI.
fr.loria.cortex.ginnet.gui.visitor.metalearning.sampling
Sampler sub-components of meta-learner GUI.