GINNet developper guide
Version 5.2.1
for DynNet and GINNet 2.2

Marie TONNELIER

15/02/2007

Contents

1 Abstract

2 First step

2.1 GINNet and DynNet!
......................
2.2.1 Why is GINNet developped in Java?
2.2.2 Where to find JRE and/or SDK . .
....................
2.4 Some descriptive informations
2.5 GForga
251 Forums

2.5.2 Tracke

2.5.3 Tasks

2.6 How to compile and run GINNet from sources?
2.7 Architectureo
‘2.7.1 Directories‘

2.7.2 Packages.

'3 Neural network concepts
3.1 Corpu§
3.1.1 Neural network categories

3.1.2 Variable categories

3.1.3 Corpus members

3.2 Competitive networks
3.2.1 Description

3.2.2 Quantification and classification . .

3.2.3 Comparison of competitive networks

3.3 Variable selection

4 Technical description
4.2 DynNet

4.2.1 Corpu

4.2.2 _Data-mining methods

4.2.3 Neural networkd
4.2.4 Supervised networks
4.2.5 Competitive networks
\4.2.6 Decision trees‘
4.2.7 Metalearners
......................
4.3.1 GINNet thread

4.3.2 Network command panels

4.4 Remaining problems

ot

© © 00 00 00 00 00 00 ~1 ~I ~J ~1 ~I ~I ~J

4 CONTENTS

5 GINNet facilities 35
5.1 Changing DynNet or GINNet version vt v vttt 35
5.2 Implementing Strategies oot 35

5.2.1 Strategy design patternl 35
5.2.2 Strategies in GINNet o oo i 35
5.2.3 How to implement strategies in GINNetl 35
5.3 Progress bam oo 38
... 39
541 TeSt Cases 39

5.4.2 Extreme programming 39

6 External tools 41
6.1 SUDVEISION . . o o o oo e e 41
6.1.1 _SubVersion notation 41
6.1.2 How to get a local copy of last GINNet? 41
6.1.3 How to modify arborescence? 42
6.1.4 How to see changes between 2 versions? 42
6.1.5 How to put local version on the repositoryl 42
6.1.6 How to resolve conflicts? 43
... 43
6.2.1 How tolaunch Ant build 43
6.2.2 How to launch GINNet and DynNet Ant build from anywhere 43
6.2.3 How to launch GINNet and DynNet Ant build from Eclipse IDE 44
6.2.4 For more informations about Antl 44
.. 45
631 FirStStePS . - o o o oo e 45
632 Antbuild 46
... 48

6.4 UML to0olS o 49
6.4.1 Poseidon|.o e 49

6.4.2 BEclipseUML . . o o oot 49

\7 Frequently Asked Questions‘ 51

Chapter 1

Abstract

The purpose of this document is to provide all needed informations to DynNet/GINNet developpers. It includes
first steps with GINNet project, a short description of some concepts used, a technical description of GINNet
program.

Any developper can take part in this guide.

Last version of this document can be found on GINNet project Documents web page, at
http://gforge.inria.fr/docman/?group_id=82

http://gforge.inria.fr/docman/?group_id=82

CHAPTER 1. ABSTRACT

Chapter 2

First steps

2.1 GINNet and DynNet

You can get a quick presentation of DynNet and GINNet project at this URL: http://ginnet.gforge.inria.fr/

2.2 Java

2.2.1 Why is GINNet developped in Java?

GINNet is 100% pure Java.
This language has been choosen because:

e required developpement time is relatively low

e oriented object conception allow reusability and extensions
e portability is assumed automatically

e application can be used easily (jar, applet, web start, etc.)

e JavaDoc tool provides quickly a good API documentation

However, Java is still slow, so you will have to take care of optimisation during developpement.
NB: GINNet is Java 5.0 compliant.

2.2.2 Where to find JRE and/or SDK
You can find Java JRE and SDK in CORTEX tools directory (/users/cortez/tools).

2.3 Charter

A charter has been written for all GINNet users to ensure code legibility, validity and quality. It specifies how
to:

e name Java elements
e comment code
e properly use Java and optimize code

e improve ergonomics
You can find this charter under DynNet CVS repository (docs/charter.pdf).

2.4 Some descriptive informations

DynNet project started in 2002 and more than one dozen of programmers followed one another.

GINNet Java project contains near 360 classes and 50 000 source lines (and behong them, approximatively 40%
of comments).

That’s why this document tries to make this project more accessible for new developpers.

http://ginnet.gforge.inria.fr/

8 CHAPTER 2. FIRST STEPS
2.5 GForge

GINNet and DynNet project is on INRIA GForge since september 2005. This forge provides several usefull
development tools, accessible via a web interface.
To be a GINNet and DynNet project member, you need to

e have an account on gforge site (to register, go to http://gforge.inria.fr/account/register.php)

e contact an administrator (Marie.Tonnelier@loria.fr or Laurent.Bougrain@loria.fr) and ask for being reg-
ister as a project member (as developer, doc writer, tester, user, etc.)

You can access project web interface at
https://gforge.inria.fr/projects/ginnet/.
GForge utilities will now be described on this section.

2.5.1 Forums

Use forums to discuss about GINNet project (if you can’t do this in person).

2.5.2 Tracker
Bug tracker

Bug tracker is used to manage bugs, so you can:
e See existing known bugs and their state. Most colored bugs are most important.
e Change a bug’s state (for example, set it as resolved)

e Submit a new one

Support request

Support request section is a way to ask for help about any problem with GINNet or DynNet. Keeping trace of
problems and theit solutions makes it possible to advance more easily thereafter.

Patches

If patches are available, they’re here.

Feature requests

It’s the place where you can ask for a new feature from any type.

2.5.3 Tasks

Tasks tab shows work to do and work in progress, and especially until next GINNet release.
Task manager is currently unused for this project and has been desactivated.

2.5.4 Docs

Docs tab regroups all public documentations available for GINNet project.
For the moment, you can only find development documentation, organized in two categories:

Development documentation: the category where you can find this guide and coding charter (Those doc-
uments are latex ones, exported to pdf, please prefer this format for new documentation.)

JavaDoc: redirections to DynNet and GINNet javadoc

(You can find more documentation on SubVersion repository, in docs directory.)

2.5.5 News

Hot informations about project advancement!

http://gforge.inria.fr/account/register.php
https://gforge.inria.fr/projects/ginnet/

2.6. HOW TO COMPILE AND RUN GINNET FROM SOURCES? 9
2.5.6 SCM

Software Configuration Management is the place where you can access SubVersion repository.

SubVersion

GINNet project is on GForge SubVersion server since the beginning of october 2005.

SubVersion is an open source version control system and a replacement of the Common Version Control System
(CVS). (You can get more informations about SubVersion on http://www.subversion.com/)

You can find very short guide on how to use SubVersion at the end of this document, at chapter

N.B.: GINNet project was previously on INRIA CVS server, at Sophia-Antipolis, since the end of 2004.

GINNet repository

Repository name: ginnet.
Connection type: svn+ssh
Host: scm.gforge.inria.fr
Repository path: /svn/ginnet
User: gforge_login

Password: gforge_password

SSH authentification

Before accessing to GINNet repository, you need to be authorized to from SubVersion server. This means that
your public SSH key must be known by GForge server. To do this, generate a pair SSH key and copy your
public key via GForge interface. You can do it here: http://gforge.inria.fr/account/editsshkeys.php
After your key is registred (in following hour), you can access repository whenever you want to.

How to create a pair key?

% ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/users/cortex/user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /users/cortex/user/.ssh/id_rsa.
Your public key has been saved in /users/cortex/user/.ssh/id_rsa.pub.
The key fingerprint is:
d0:16:79:4a:¢4:40:f4:88:25:02:04:41:46:0e:6b:ae userQuillers.loria.fr
Your pair key is created. Your public key is here saved in /.ssh/id_rsa.pub file.

2.5.7 Files

It is the place where you can quickly see and download all DynNet and GINNet versions.
But use SCM for development.

2.6 How to compile and run GINNet from sources?

An Ant build file has been created to easily compile, run and perform all other usefull tasks for GINNet and
DynNet. See section for more informations.

http://www.subversion.com/
http://gforge.inria.fr/account/editsshkeys.php

10 CHAPTER 2. FIRST STEPS
2.7 Architecture

2.7.1 Directories
SubVersion repository

SubVersion repository contains four directories :
e src: contains GINNet source code, i.e.:

— fr.loria.cortex.ginnet package that contains DynNet and GINNet code, and available in public pack-
ages.
— tests package that contains classes only use for testing and especially test cases.

e examples: contains example files:

— corpus: all saved corpus examples, regrouped by type of corpus (categorization, classification, fore-
cast)

— databases: all data saved files (including some files from UCI Machine Learning Repository into
ucimlr folder) (See http://www.ics.uci.edu/ "mlearn/MLRepository.html for more data exam-
ples).

— networks: saved networks

lib: contains external library in jar files

— JUnit (junit.jar): for test cases
— MySQL (mysgql.jar): to manage MySQL databases

docs: this folder contains documentation ressources and especially:

— charter: source files (LaTeX file and graphics) of GINNet charter
— guide: source files (LaTeX file and graphics) of GINNet developper guide

uml: all UML ressources: diagram images and Poseidon source file (whose extension is zuml)

— profiling: backups of java profiling files

utils: regroups some scripts and usefull programs:

— ant: a directory containing build tools. For more informations about Ant see section

* build.xml: the Ant script allowing to compile separately GINNet and DynNet, make correspond-
ing jar files, launch GINNet, generate the JavaDoc, copy useful files to the web site, launch test
cases, build source zip packages.

x DynNet_build.xml and GINNet_build.xml: the Ant scripts for DynNet and GINNet source re-
leases. They are not usable as it, but are used by the build.xml script.

% jsch-0.1.28.jar: a library used by the build.zml script to perform scp tasks.

— GINNetCorpusConverter.jar: a version of GINNet that allow corpus convertion from old to new
corpus format (changed in version 1.2.5). To convert an old corpus: run this jar, open corpus file
and save it. It will be saved in new corpus format that can be opened with GINNet and DynNet
1.2.5 or higher.

— stats.csh: gives some statistics on source code

— GINNetManifest. MF: the manifest file to build GINNet.jar, used by the build.xml script.
— GINNetStore: the keystore to sign GINNet.jar, used by the build.zml script.

— header: a package containing a Java program to easily replace headers of all source files

e old: this folder only exists temporally, to keep old code files and is not useful.

bin directory is not under SVN. It’s the folder where to put compiled sources.
Root directory contains useful files:

e DynNet and GINNet packed in two jar files (not always up to date): GINNet.jar and DynNet.jar, and
files used to build them: GINNet.cer certificate and GINNetStore keystore.

e GINNet.jnlp: JNLP (Java Network Launching Protocol) file to start GINNet with Java Web Start
o applet.html: GINNet in an applet (that uses GINNet.jar and style.css)

http://www.ics.uci.edu/~mlearn/MLRepository.html

2.7. ARCHITECTURE 11

Releases

GINNet and DynNet are separately downloadable as zipped sources packages. Both of them contains two
directories :

e src: contains GINNet package (fr.loria. cortex.ginnet) or just DynNet package (fr.loria. cortezx.ginnet.dynnet).
e [ib: contains external library in jar files

— JUnit (junit.jar): for test cases
— MySQL (mysql.jar): to manage MySQL databases

Root directory contains useful files:
e GINNet license: in english (CeCILL license.txt) and in french (licence_CeCILL.tat).

e build.zml: the Ant build script that can compile, make corresponding jar and generate JavaDoc. For
GINNet, it can also launch the application. For more informations about Ant see section

GINNet zipped file also contains GINNetManifest. MF, the manifest file to build GINNet.jar, used by the
GINNet build.xml script.

2.7.2 Packages

GINNet package (called fr.loria.cortex.ginnet) contains three main sub-packages:
e data: regroups all data pre-treatments

e dynnet: DynNet library package that provides all Java elements needed to manage several types of
data-mining methods (like neural networks and trees) and that can be used separatly

e gui: all graphical interface classes and main class called GINNet

12

CHAPTER 2. FIRST STEPS

Chapter 3

Neural network concepts

This chapter refers to Laurent BOUGRAIN thesis ” Etude de la construction par réseaux neuromimétiques
de représentations interprétables : Application a la prédiction dans le domaine des télécommunications” (14
november 2000).

And ”Réseau de neurones Méthodologie et applications”, G. Dreyfus, J.-M. Martinez, M. Samuelides, M. B.
Gordon, F. Badran, S. Thiria, L. Hérault, Eyrolles, 2002

3.1 Corpus

3.1.1 Neural network categories

Neural networks can be separated in two categories depending on which task they have to perform :

e Supervised neural networks are used for prediction.
With this kind of corpus, you know the nature of your data (you know what classification you want).
And you want to teach your neural network how to predict results.

— Regression neural networks are used for forecasting.

— Discrimination neural networks are used for classification.
e Unsupervised neural networks are used for data analyses

— Categorization neural networks are used to find categories for data by attributing non-predefined
classes to each kind of data found.

13

14 CHAPTER 3. NEURAL NETWORK CONCEPTS

3.1.2 Variable categories
Data can be divided in three types :

e Attributes (entries) are input data, observated values. They are necessary variables specifying attribute
valuation.

Examples: If you analyse iris classification, attributes are leaf lengths. (You can find iris database at
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/iris/). If your data concern the weather,
it can be a binary value for shiny or not, raining or not, etc.

e Labels are output data. They specify the names you assign to each category of data. It is usually a
string.

Examples: If you want to classify iris species, labels can be ”Iris-setosa”, ”Iris-virginica” and ”Iris-
versicolor”. If you want to study boolean comportment, like xor operator, labels will be possible result :

” 0

"true” or "false”. If your neural network is aimed to recognize letters, labels will be ”a”, ”b”, ..., 7z

e Targets are output data. They correspond to numerical values of the last layer of a neural network.

Examples: If you classify two types of data, the last layer will contain two neurons N1 and N2. Targets
values will be (0,1) or (1,0), corresponding to (N1, N2) values.
With regression network, you already have targets but no name for labels.

3.1.3 Corpus members

Corpus Variables
Input Output
attributes | labels | targets
Forecast b X
Classification b X X
Unsupervised X X
Cluster X X

In the case of cluster corpus, labels are known, but are only used to interpret results at posteriori.

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/iris/

3.2. COMPETITIVE NETWORKS

3.2 Competitive networks

3.2.1 Description

Unsupervised networks doesn’t work by teaching correspondance between desired output and computed output

but by data organization.

Competitive networks imply a competition between output neurons. Only winner neuron is modified in order

to better caracterize current input.
Kohonen, Neural Gas, Growing Neural Gas and KMeans networks are based on competitive algorithms.

3.2.2 Quantification and classification

Quantification identify a prototype for each class. A prototype is a "mean vector”, a representative node.
Classification associates a class to each pattern. This class is the one of the nearest prototype.

3.2.3 Comparison of competitive networks

Type of | Applications Topology Specification Learning

competi-

tive net-

work

K-means Intra-class inertia | No links between | Groups are linked

minimization nodes after learning

Kohonen Example cate- | Defined with prob- | Groups are linked | Winner and neigh-

self- gorization and | lem. Generally a | before learning | bors are modified.

organizing neighborhood con- | grid. (Number of neigh-

maps strainst ~ between bors and resolution

classes are fixed)

Neural gas Constructed with For each pattern, a
an hebbian learn- connection is cre-
ing. Number of ated between the
connections de- winner and the sec-
pends on lifetime of ond node. Connec-
neurons. tions have a finite

lifetime.

Growing Data partition- | Constructed and | Classes are dynam- | New prototypes are

neural gas ment, quantifica- | changed with a | ical. The less rep- | periodically added

tion and caracteris- | competitive heb- | resented area is the | where error is high-

tic extraction

bian learning.

one where new pro-
totypes are created.

est. Winner and
neighbors are modi-
fied (like Kohonen).

Network topology In competitive networks, the network is divided in two layers.

e The first layer is the input layer (so it contains as many neurons as number of attributes)

e The second layer depends on the topology of the network.

16 CHAPTER 3. NEURAL NETWORK CONCEPTS
3.3 Variable selection

Variable selection methods can be divided in three groups:

e Filter methods study the dependance between the variables (Mutual information, correlation, etc.) to
select a subset of variables before using a model.

e Wrapper methods use a model (neural network, tree, statistics, etc.) as a blackbox to evaluate a subset
of variables. A subset is obtained using a backward selection, a forward selection or a mix of them.

¢ Embedded methods select a subset of variables during the training stage.
These methods, in neural network domain, can be divided in two types:

— Connection suppression:
* Optimal Brain Damage (OBD): with this method, there is no need to recompute network weights
before deleting connections
* Optimal Brain Surgent (OBS): is based on OBD, but is more complicated because error is not
considered as quadratic

* Flexible OBS (F-OBS): is only applied to one layer
— Neuron suppression:

% Optimal Cell Damage (OCD)
* Unit-OBS: deletes neurons having less relevant connections

Chapter 4

Technical description

4.1 Overview

Diagram represents GINNet components and their interactions.

Classification egmssmn Clustering
Method Method Method

Figure 4.1: GINNet organization

As we can see, view classes (gui package) are separated from model classes (data, and dynnet packages).

17

18
4.2

CHAPTER 4. TECHNICAL DESCRIPTION
DynNet

DynNet package is composed of five sub-packages:

corpus: contains classes to manipulate patterns
metalearners: meta-leraning implementation

methods: describes data-mining methods types and hierarchy. All concrete models are derived from
those interfaces.

neuralnetworks: all basic classes relative to neural networks concepts and especially:

— competitivenetwork: unsupervised network structure
— supervisednetwork: supervised network structure

— models: all implemented neural network models: Kohonen, Neural Gas, Growing Neural Gas, K-
Means and Perceptron

trees: decision trees library that contains a sub-package:

— models: tree implementations: C4.5, CART, ID3

— models: information functions

utils: contains different utilities that can be used anywhere in DynNet or GINNet:

criteriastrategy: criteria used by variable selection

math: all mathematical methods usefull for DynNet

preferences: user preferences package

results: package used to display method’results in HTML
— strategy: used to easily implement and use Strategy design pattern

— task: used to display long task progression informations

4.2. DYNNET 19
4.2.1 Corpus

A corpus is a set of pre-treated data, directly usable by a neural network. So it’s an obligatory step before
network creation.

Corpus describes patterns, i.e. input and output variables of the network. To manipulate network’s patterns,
we choose to directly use the pattern set (instead of copying all data into a network variable).

Three types of corpus have been defined, depending on which task they are meant for:

e Categorization corpus are used to cluster data, i.e. gather examples into homogeneous groups (with
Kohonen, TOM, Neural Gas, Growing Neural Gas or K-Means)

e Classification corpus are used to classify, i.e. assign examples to pre-defined classes (with Perceptron
or trees)

e Forecast corpus are used to make regression, i.e. predict one or several continuous variables (with
Perceptron or CART trees)

Class diagram at figure describes corpus architecture.

Patterns can be viewed as a matrix of input data where a line is a pattern and a column is attribute’s values.
Those objects (patterns and attributes) are manipulated with indexes. There are no type for a pattern or a
list of attribute (it’s just a choice of implementation).

But a type has been declared to manipulate an attribute value: the class Attribute, described in diagram
DynNet manages:

e numerical attributes, whose type is NumericalAttribute

e symbolical attributes, whose type is SymbolicAttribute

G Attribute

@ unknown: boolkean
@ type: short

o SYWBOLIC: short
o NUMERICAL: shart

@ getType(): short
&' toString(): String
& getvale(); Object

A

[c] SymbolicAttribute ® NumericalAttribute
@ walue: String @ wvalue: float
& symbolicAttribute() & NumericalAtiribute()
& SymbolicAttribute (value: String) & NumericalAttribute (value: float)
@ 1oString(): String @ toString(): String
@ getValue(): Object @ getVale(): Object

Figure 4.2: Attribute class diagram

NB: Corpus interfaces are used to separate the hierarchy of abstraction from concrete implementations of
corpus, like described by Bridge design pattern. This implementation should be transparent for corpus user.

CHAPTER 4. TECHNICAL DESCRIPTION

AbstractNewrzINet work

frloria. cortex.ginnet.dynnet cormpus + pattems‘

Ifr. lorfa. cortex ginnetandco. dynnet. corpus. pattems|

Wis tor Corpus
NumericalValue
+visiticorpus:ForecastCorpusyvoid Ancipie P
+uisiticorpus: CategorizationCorpuskwoid +unknoven:boolean UM en calAttributed:
+uisit (carpus: ClassificationCorpus)woid A SIMBCLIC short=1 +hlum ericalfttributedvalue float)
T AHUMERICAL: sho

! +iypeshor

| SymbolicAttribute
+get Type (ishort I

+roString St ing +ualue:string
! COFP us G +SymbolicAttibute
+SymbolicAttibute dealue: String):

[Patterns interfaces

<= interface =>
! Antributes
: ot - {> +get bW ariabled:int
; +ram e sting + pattems +get MbAttributeQint
‘ #type String +get CurrentAttrbute giint
; +commert:String +getAttribute(y Atiribute
| +szveCarpusifileMNam e St vingrvald :g::?ﬁ:ﬁﬁ:;i{p‘a‘::g’j‘.;‘:t).mwbu!e
: et TypE):Sing +getiariabletame dariable:inty String
) +oetVarableNamesd String(]
i +getAttribute Ty pefattribute int):short
; +getAttributeTypesd:short[]
1 +setCurrentattribute @ieibute intvoid
‘ +sethlext (-boolean
; +zetiariable Mam efvariable int, nam e:Stringywvoid
; +setAttributeTy pe @ttrbute int type: shonyvoid
|
| *
; Lo << interface >
i AbstractFile Corpus Fatterns
| [+SEPARATOR:StAng="" ~+getMbPatternint
k 4 COMMENT: char: +get CurrentPatte mixint
! +HEADER shart +getAttributesipattern: inth Attribute[]
! +MUMERICAL COLUMM String="Mumerical® +get Attributedpatterm:int, attnbute inAtrikute
L +5rMBOLIC_COLUMM: String="Sym halic' +zaveVariablesifileNam exStringvoid
' | SLRBEL_COLUMMN: String="Labe " +get Patternfinde x:int type intiint
| +TARGCET_COLUIMN St ring = Target" +addPattem fypeint, pattem int)void
f +addPattem (inde x:int,type iint, pattem:int)void
| +getPatterns(: Patterns +removePattern{type:int, pat tem:int)void
| +searchTypefileMam e:ftingyvoid +rem ovePattern (pattem: inty:void
I | +acceptvisitor:IVisitorCorpusyvoid +removedttribute (atribute intwoid
I +saveCorpusifileMam e String)woid +clearPatte mstype: inthvoid
‘ N +agetMbPatterniypeint)int
! +get PatternType(pat tem int) int
[+ogetAttributes(eAttribute[]
f +getAttributed) Atiribute
L +aet Attributedattibute intyAttribute
i’ +sethle ¥t (:boolean
! oref-ast Corpus +setCurrentPattern(pat tem: int) woid
+setAttributefvalue Antributeyvoid
L +setAttributefattibute fint, value Artribate)woid
+ForecastCorpusdargetsilis|data:Data) +setAttribyte(patiemint, attibuteintvalue Al ribute)void
+FarecastCorpusiileNam|e Sring) ﬁ}‘
+ForecastCorpus<almbu(FilgMame:String, targetFileMame: Strina): [_ |

: << interface >>

TargetedPatterns
ihis.type = "Horecast”,
1his.patterns | new ListTargetedPatte msimpli. J; +gethlbTarget diint
! +get CurrentTargetdy:int
+get Targets(ifloat[]

|
f +get Targets(pattem: inth:float]]

| +get Target{pattem int, target sint) float
|

|

PCA +zethlbTarget(nb int)void
+eigenWector double(][] +setCurremTarget darget :inthwoid
+setTarget{targetint, value floativoid
+setTarget fvalue floatywoid

i
i
| ‘ +setTargel {pattem:int, target: int value: floativoid
| orpus +sethext(:boolean
i +saveTargets(fileMam e:intyvoid

Categorigzation Corpus +saveVariablesifileham e:String Y void

|
+DEFAULT L ABEL String -
T

+CategorizationCorpus{labelindgx:int data:Data): =y b =< interface =
+CategorizationCorpys(fileMNam g String): pREtems LabelledPatterns

i
+CategorizationCorpus{attributeFileMame String, labelFileMame:String) k
T +gethblabeldint]
i
1

; ! +getlabeli:String

+setMbLabel (nb:intywoid
+zetLabelipattem:intvalue:sting pvoid
+setlabelfralue: String)woid

A

L
==l interface =>
‘TargetedLabelledFPatterns

this.type ="Categor sation;
this.ppiterns = new LabelledPattemsimpl(y;

+ClassificationCamus(labellndecint, dat 2 Data)
+ClassificationComus{fileNam e:String):
+ClassificationCorpusiattributeFileMameint labelFileMame: String)woid

this.type = "Classification’;
thiz. patterns = new LabelledPattemsimpld;

Created with Poseidon for UM L Community Edition. Mot for Cammercial Use

Figure 4.3: Corpuses class diagram

4.2. DYNNET 21

Corpus files

A file format has been defined for corpus:

e Fisrt lines are comments lines and begin with #.

Next line is the name of the corpus.

Next line is the type of corpus: Categorization, Classification or Forecast.
e Next line describes types of column. Columus are separated by a separator (a comma by default).

— For each attribute, the label Symbolic or Numerical.

— For each target, the label Label or Target.

Next line specifies, for each column, its name.

All following lines describe data. A line correspond to a pattern and is composed of:

— For each variable, its value,
— At the end of the line, the type of pattern: (Learn), (Test) or (Validation).
Figure is a example of content of a discrimination corpus, named golf, that contains four attributes and

a label that can be Play or Don’t Play. It contains ten learn patterns, two test patterns and two validation
patterns.

Golf corpus

#

golf

Classification
Symbolic,Numerical, Numerical, Symbolic, Label,Target, Target
Outlook, Temperature, Humidity,Windy,Practice,Don't Play,Play
sunny,85.0,85.0,false,Don't Play,1.0,0.0, (Learn)
sunny,80.0,90.0,true,Don't Play,1.0,0.0, (Learn)
overcast,83.0,78.0, false,Play,0.0,1.0, (Learn)
rain,70.0,96.0,false,Play,0.0,1.0, (Learn)
rain,68.0,80.0,false,Play,0.0,1.0, (Learn)

rain,65.0,70.0, true,Don't Play,1.0,0.0, (Learn)
overcast,64.0,65.0, true,Play,0.0,1.0, (Learn)
sunny,72.0,95.0,false,Don't Play,1.0,0.0, (Learn)
sunny,69.0,70.0,false,Play,0.0,1.0, (Learn)
rain,75.0,80.0,false,Play,0.0,1.0, (Learn)

sunny,75.0,70.0, true,Play,0.0,1.0, (Test)
overcast,72.0,90.0, true,Play,0.0,1.0, (Test)
overcast,81.0,75.0,false,Play,0.0,1.0, (Validation)
rain,71.0,80.0,true,Don't Play,1.0,0.0, (Validation)

Figure 4.4: An example of classification corpus file content

22 CHAPTER 4. TECHNICAL DESCRIPTION

4.2.2 Data-mining methods

methods package has been added to provide a hierarchy for data-mining models. There are all interfaces
that describe common comportements. Class diagram describes methods package and how it is used by
datamining methods implemented in DynNet.

=< interface == fr.loria. cortex. ginnet.dynnet.methods
Entries

SFrom filoriecortexiginvet dennnet imethods: entHesy =< interface ==
+get MbPatterni:int Re sultah leMethod
+get MbPatternipattem Ty pe:shorthint Fget ModelMam ed:5thing
+get MbAttribute :int +getModelDesciption{: String
+get MbAttribute ftype:short)int +get ResultCrescription §:5tring
+get ActiveAttributesoint[]
+getlnputsipattem int):Attributel]
+get MbOutputi:int 1
+get Qutputs{istring(] < intetface =
+get ExpectedResult{pattem:int):Object DataM mingMethod

+get AttributeMam efattribute; int):5tHng

+get AttributeMam es(:String(]

+get Patterns{patternType:shortlint[]

+get AttributeTypefatiribute intyshor

+isActive @rrbute:int:boolean
+setPatterms{pattemTy pe: shor, indexe s int[void
+zetPattemsipattemType: short, pattemns: Collection)vaid
+zethctive(attibute:int, active:booleanyvoid

+clearPatte msfpattemTypeshort)vaid

+get PatternTy peipattem:inthshort D
+get AllAttributes@ttribute: inth: Collection

+get Typed:Sring
+getDescription (:5thing
+getEntries {: Entries

Hearm woid

Hestfvoid

+getLe amEmror(:float

+get TestErrori:float
+getModelMam ed:String

4get ModelDescrption d: StHng
+getResultDescription:String

1

1
1
i
1
!
) <= interface == <= interface == < ihterface ==
! SupervisedMethod Stoppab ke Method UnsupervisedMethod
1
i +izsRegressive (tboolean +get Epochiiint
t +validate {:void +resetEpoch Qivoid 74
fr.loria. cortex. ginnet.dynnet trees \ +getalidationError:float +zetEpochi{epoch:int)wvoid
i +get PredictedResult (pattern:inty Ohject +stop{:boolean
. 4 +doLearnCycle fiuoid
AbstractDecisionTree e [P, SRR e e EIE
et \‘
|
S e v e eSS s sl =g 3 << interface =& <= interface ==
Zﬁ‘ ZF‘ i * (las sifi@mtionMethod ClusteringMethod
| G5 | | CART | [== interface =& +get Predicted Classipattem:int):string +get Prototy pesipatterm:int):float[]
Lo |- 'r:_ J> Regress jon Method +aet Confidence Q:5tHing +getMbPrototypesgiint
T
LEE} +get PredictedWal ue (pattem int): float i i e
[N . 4 -
: E & A
i L . L -
o 1 1 b 1 s g
Vi 1 g w g g il = X
frloria; cortex. ginnet.dynnet. nedralnetnorks It) e = oREE
AbstractNeurzINet work 1 T ! ! “
G i] I
e e [frliria. cortex.ginnet.dynnet. metalearners
e ST —w_'_ 1]
Ap = = = ‘[St e 1 1 4y AbstractMetaSupervisedlearner
il 5 1 !
AbstractSupervised Netwark Abstract Competitive Netwark ! !
| |
1 |
] I %
A A ! i Abstract Class ficationMetal earner
[1 o e o
Kohonen GNG 4
|
" I
n , 5
| oM | | NeuralGas | L | |
| Bagging | | Arcing | | AdaBoost |
KMeans

Figure 4.5: Data-mining methods hierarchy and models implementing them

All datamining methods displays HTML results.
DataMiningMethod extends Entries because a model can’t be separated from its data in DynNet.
DynNet, in version 1.2.5, implements twelve concrete datamining methods:

e Decision trees (C4.5, CART and ID3) are classification methods. CART performs regression tasks too.
e Neural networks are stoppable datamining methods.

— Supervised networks (Perceptron) are classification and regression methods.

4.2. DYNNET 23

— Competitive networks (Kohonen, GNG, NeuralGas, KMeans and TOM) are clustering (and so un-
supervised) methods.

e Supervised meta-learners are supervised methods. ClassificationMetaLearner concerns classfication meth-
ods (Bagging, Arcing and AdaBoost). Bagging meta-learners is also a regression method.

As we can see, implementing methods interfaces is the way to describe what methods can do and to easily use
them is GINNet environment.

4.2.3 Neural networks

AbstractNeuralNetwork is the super class of all networks in GINNet. It is included into neuralnetworks package.
It extends DataMiningMethod and StoppableMethod interfaces.

Learning rate update is made by a LearningRateFunction and learning end is decided by a StoppingFunction.
There are both strategies.

Figure shows neural networks package.

CHAPTER 4. TECHNICAL DESCRIPTION

== interface => << interface >

StoppableMethod NumericEntries
¢from frloria.cortex. ginret. dynnet.methods (from fr:foria: corvex: ginnet. dynnret.. methods: extries)
+getEpoch{:int +gethum ericinputsipattern:int):float[]
+resetEpochivoid +getTargetsipatternint): float(]
+setEpoch({epoch: intyvoid +getMbTarget(:int
+stop :boolean +getTargetMam es(x String[]
+doleamCycle fivoid +getTargetilamefargetint) String

#method fr.lonacoHex.gmnet.dvnnet neurzlnetwork 5| #emr\esT

AbstractMeuralNetwork

Hype:string

#epochiint=0
#earnError:float= Float.Mak
#estErrorfloat= Float Mahl
+hatch:boolean= false

<= create =rx+AbstractMeuralMetwork .k Abstract NewralW ebwork
+setEntresientries:MumericEmes)vaid
+getEntries(Entries

+gethlum ericEntriesd: MumericEntries
+zetStoppingFunction{ztoppingFunction: Abstract Sropping Nenction) woi d
+getEpach(:int

+resetEpochwvoid

+get3tappingFuncriond: A Dstrac Stanpingiirction
+setleamingRateFunctiondearningRateFunction: Abstract[e armirgRatelinctionvoi d
+getlearningRateFunction(y AbstraclearningRate wrdtion
+doleamCycle {nvoid

+testvoid

FdoCyclelpatterns: int), is Training: boolean foat
Hearn{rvoid

+com put eLeamErrordwvoid

+getTyped: String

+getlearnErrord float

+getTestEnon:float

+seralizeMe twork (file: String)void
+aetstoppingFunctionbist {:List
HaetlearningRateFunctionlist i:list

+reset{void
+clearPatternsipatternType:short)void
+gethbPattemint

+gethlbAttribute():int

+gethbAttributefype: short)int
+getActiveAttributesgiint[]

+getinputsipattern:int) Attribute[]
+getExpectedResultipatternint) Ohject
+getAttrbuteMam edattribute:int): String

+getAttrbute Type @ttribute: int) short,
+getMbPattemipatternType: short)int
+isActive{attributeiint):boolean
+setPatternsipatiernType:shortindexes int[[void
+setActivedattributeint active:boolean)void
+getPattemspatternType: short)int[]

+gethlum ericinputsipattern:int):float[]
+getAttributeMames(:String]
+getPattemTypelpattern:int) short
+getAllattrbute stattributeint) Callection
+setPatternsipatternType:short,patterns:Collection) v oid
HgethlbOutput jiint

+setEpochiepach:intvoid

+stop frboolean

+getou pursdy stringl]

+gethodel Mamed:5tring

+gethodel Descriptiond: StHing
#getDescriptionListd:List

+getResultDescrptiond: StHing

#getErrorsList(: List

FgetErrorCaolorsListd: LisT

2getlayers Descrintiond:String

#neuralNetwork | 1

stoppingfunitions ¥ stoppingFunction

AbstactStoppingFunction

supefvise dnetmrk s|

AbstractSupervisedNetwark

+step(hoolean
+zetStoppableMethodimethod:StoppableMethod)void
+aetTitl ed: String

+qetCoaly; string

Ifrloria coresx. ginnet. dynnet.utils strategy +getTypelt String §
+getrwliDe scriprion .51 iRg

AbstractStrategy| eI RETEF IO == = FEUTE NE ooy | |com petitivenetworks
k] L

- - #learningRateFunction L AbstractCompetitiveNetwaork|
learningratefunctions| 1

AbstractlearningRateFunction

#rype:String | :
+learningRate:float=0.05f |
#initialLeamingRate float models |

+updatefivald

+getType:String

+@etfuliDe scrintion (.5t ing

+resetivoid

+setMeuralMetworkineural Metworic 4 Dstract NevralN erwork) void
+getTitled: String

taetCoal(y string

Perceptron, GHG,
kMeans, Kohonen,
MeuralGas, TOM

Figure 4.6: Neural networks class diagram

4.2. DYNNET 25

4.2.4 Supervised networks

Figure shows the architecture of supervised network package.

A NeuronUnit is a neuron and a SupervisedPopulation is a layer. InputSupervisedPopulation is the class of
input layer and provides methods to activate (add) and desactivate (remove) input neurons, useful for pruning.
Projection describes connections between two populations and can contain bias.

<< interface =» <= interface ==
RegressionMethod Chssificat ion Method
{from friloria.comax. ginnet. dynner_meathods? (from frlorla.comax glanar dyrrer mathods)

AbstractNeuralNetwork | | == interface =
(from fr loria cortax_ginret. dyrnet_neiralnetworks: | | SingleSupervised Learner
e T -D (from fr:Jaria: cortex: gikket: dyrret matalearrar sl

ﬂ I

frlona.corex. ginnel. dynnet.neural network s, stupenrisednetwarksl
]

< | Supervis edhet workManager
AbstractSupervisedietwark embedded

Lized by
feature zelection

#regrezsion:boolean

#popul ations:ArrayList= new ArrayList
#projections:ArrayList= new AmrayList
+validationErrorfloat= Float Mahl

v

Embedded pruning
methads

populationss

. . o
projections]

: +a
Projection . Supervis edPopu lation transfertfunctions
#oonnections:ArrayList= new AmrayList [4 | #connectionsAmraylist Ab p forE =
! -unitz ArrayList e stract TransferFunction o
hiaz[] ! | "f‘& |
Y And its implementations
Bias Input SupervisedPopulation
+ualue:float -nbActivellnits:int :
+hackup:float LIHES
errorfunctions
connections .« uhits(] -
W errorfunction [AbstractErrarFunction
Supervis edConnection +a NeuronUn it
+hf WALUE float = 100000 +h +input:fioat L
-value:float +outputfloat And its implementations

k% 7
<= interface > AbstractStrategy
Frunable Component (from fr.lona.corax. ginnet. dynrer Litils straregys

(from frolonia: cortax: ginnat: dyrnet methods: makagement)

Perceptron
{from frolora; cortay . giret dyaier: raltkal e rwork 87 modals : narcemrr o

Figure 4.7: Supervised networks class diagram

Perceptron is currently the only concrete supervised network implemented in DynNet.

26 CHAPTER 4. TECHNICAL DESCRIPTION
Perceptron

Figure describes Perceptron classes.

A Perceptron is described by its layer layout (sizes), its error function and its classification error function (used
to compute misclassification error), its momentum and its confusion matrix. It can have bias or not. Inputs
(neurons of input layer) can be activate or desactivate with pruning methods.

PerceptronProjection and PerceptronConnections classes has be defined to extend classical Projection and
SupervisedConnection (defined for any supervised network). PerceptronConnection keeps backup values of
connection value and delta in memory, in order to restore best Perceptron configuration and PerceptronProjec-
tion uses it.

As a Perceptron can be saved (in binary format), all its components are serializable. Perceptron also uses
NumericEntries.

fr.loria. cortex. ginnet.dynnet. neuralnetworks . supervisednetworks
AkstrartError Function Froject ion SupervisedConnedt ion
From errorfuncions
connectidhs
o o Ca e
f + errorFunction o *prnjec{';r’\ﬁ‘ns o ﬂ‘
ClassifimtiunErrurFlhnuhn AkstractSupefvisedNetwork el &
| i o
1 ozt A
£ il 2 e
~classificationEmrorFunction | - i =N
! ,—: -7
= interface == fr. lpria. cartex. gimnet. dynnet neuralhetworkz.modeld perceptron
Serializal e
YO javaliod g
T 4 Ferceptron PerceptronProjection
+sizesint(]
+momentum:float 4o] PerceptronConnection
| | #biashoolean =falze T
+leamCF:int[][]
+testCEint[][] ey e B e e e o
+walidationCF:int[][]
—activate dinputs boolean[]

A

1
== interface =
IVis RorPerceptron

+yizit{unit: MeuronUnit)woid
+uwizitiperceptron:Perceptronivoid
+wizittpopulation SupervizedPopulation)void

I

|

I

I

I
'

== interface ==
NumericEntries
From frolovia;cortexi ginvet dynnetimethods: entrias)

Figure 4.8: Perceptron class diagram

4.2. DYNNET 27

4.2.5 Competitive networks

Competitive network architecture is simplier as shown in figure [4.
CompetitivePopulation corresponds to output layer of any competitive network.

A Node is a neuron and a Bond is a connection between two neurons.

Topology is used by some competitive network implementations like Neural Gas and Growing Neural Gas.
To parametrize output adaptation, two specific strategies are linked to a competitive network:

e A distance function that describe how to compute the difference between desired outputs and real outputs,
in order to correct weights.

e An aggregating function that determine how to update prototypes.

AbstractNearalNetwork << interface ==
(from frloria.cortex.ginnet.dynrnet neltralnetworks) ChlsteringMethod
(from frioria.cortex.ginnet. dynnat methods:
Fiy i

fr.loria.cortex. ginnet. dynnet.neuralnetwork g com petitivenetworks

AbstractCompetitiveNetwark << interface >
+elassOfiode:String= Node.class.getlamey <& — - CompetRiveNetworkViskor| 1 _ & Wisitar Design Pattem
+inputs:float[] uzedtodisplay competitive networks
distancefunctions|

H population

AbstractDistanceFunction

- distanceFunction

Compet it ive Popu ltion
-nodes: Amraylist And itz implementations

AbstractStrategy

s (from frloria.cortex_ginnet. dyrnat Litils strategy:
aggregatingfunctions|
nodes - aggregatingFunction | |AbstractAggregatingFunction
"
And its implementations
Node
+value:float= 0.0f =< interface , read-only ==
Fratednt - 0 e T S L, — Comparator
+prototype:float]] (from Java: il
+patternList:Vector= new Vector)
+ a? + b?
Bond Topology
2 + honds 5 s
+age:int +honds: Arraylist= new ArrayList§

Figure 4.9: Competitive networks class diagram

Currently, five models implements competitive networks: GNG, KMeans, Kohonen, NeuralGas and TOM.

28 CHAPTER 4. TECHNICAL DESCRIPTION

4.2.6 Decision trees
What are decision trees 7

Decision trees are data-mining methods used to split populations into homogeneous groups, according to dis-
criminant variables, and in function of known target.

A decision tree is a predictive model; that is, a mapping of observations about an item to conclusions about
the item’s target value. Each interior node corresponds to a variable; an arc to a child represents a possible
value of that variable. A leaf represents the predicted value of target variable given the values of the variables
represented by the path from the root.

Figure[4.10]shows an example of decision tree that predict if you should play golf or not, according to outlook (a
symbolical variable), humidity (a numeric variable) and windy (a boolean variable). Data of this example also
contains another numeric variable (temperature) that is needed by this tree to predict target without any error.

Cutloak

sUnny owercast rain |
Hurmidity:

Limit - 70,00 iy | Hlaoy
; : 100% {4 patterns)

o= > false True

Plasy | Dan't Play | Play | Don't Play |

1005 (2 patterns) 100% (3 patternsy 100% (3 patterns) 100% (2 patterns)

Figure 4.10: An example of a decision tree

How are they implemented in DynNet ?

Figure shows decision trees package organization in DynNet.

AbstractDecisionTree is the super-class of all decision trees. At the moment, three algorithms have been
implemented in DynNet : C4.5, CART and ID3. They are all regrouped in models package. All decision trees
are classification methods and some can also perform regression tasks, like CART.

As decision trees are trees, they are implemented with a recursive structure: all nodes are described by the
TreeNode class. Each node keeps a reference to its parent node and a decision tree has only one reference to
the root node.

Information function describe the way information quantity is evaluate. All decision trees have their own
information function. They are included in informationfunction package. At the moment, three algorithm
have been implemented:

e Entropy (used by C4.5 and ID3),
e Gini (used by CART),
e Variance (used by CART).

4.2. DYNNET 29

<= interface == << imerface ==
SnglkeSupervisedlearner Clas sificationMethod
SFrom friloviz cortex. ginnet dynnet. meteleabners} From frlovie cortex ginnet.dynnet.methods

== interface = <= interface ==
Entries Re gress on Method
Trom:-frlovia; cortex: i ginnet . dennet. methods:artries) From frilovia.cortex ginhet. dynnet.methods)

7 r S ! Fi}

a* :"rl"ies #enres ! !

fr.loria. cor‘tex.ginnet.dynnet.t"rees

AhstractDecisionTree !
infarmationfunctians models |
#classindex:int ;

#estError: float= Float.Mai 15 151 -

HvalidationError:float= Float M akl <ﬂ 1
+stoppingPercent:float= 66.667f 1

. el -regre ssion:boolean i
1 T

mfaFuncion iV CART !
| ! Mo Class Predicted Exce ption

AbstractinforimationFutction

and itz implementations

D3

oot ¥ lasthlode

TreeNode

&
|

I

I

4

|

|

|

I

l +izLeaf:hoolean | I
I +attributeM ame: string= null i I
I +attributel nde xint i I
I +arcsedar= new Wectaor ; I
i +probabilitie s:Wect or= newe Vecton) ; I
i +zubtre esMector= new Wector) i I
i +izContinue boolean = falze i |
I +limit :float I |
1 +infoluantity:double i I
1 +=zymbaolicsiplitlimit:String i I
l +nodeCardinalityint i I
I ~claz=Proportions:float[] i I
1 ~clazsMamesz: 5t ring(] ; I
1 ~mean:float i I
|

I

I

I

I

J

i + parent I

== interface =
By i R L T e AT R S e {]______._ _____________
Serizlizab e

Frow jave oy

Figure 4.11: Decision trees class diagram

30 CHAPTER 4. TECHNICAL DESCRIPTION
4.2.7 Meta-learners

Meta-learners are data-mining methods based on meta-learning. They use sub-learners (or weak learners), that
are simple learning models, and learn how to distribute samples among them (sampling) and how to combine
their results (combining) in order to optimize performances.

Figure shows meta-learners package organization.

AbstractMetaSupervisedLearner is the super-class of all meta-learners. A meta-learner has:

e several sub-learners, whose class is SingleSupervisedLearner, and regrouped in an array whose size is given
by the attribute nbLearners

e a factory to create those sub-learners

e a sampler: a class extending AbstractSampler and defining an algorithm to distribue samples among
sub-learners

e a combiner: a class implementing Combiner interface and defining an algorithm to combine sub-learner
results to get final result

e patterns (entries), whose type are Fntries

All sub-learners of a meta-learner have the same concrete type. Actually, two classes implement SingleSupervis-
edLearner interface: AbstractSupervisedNetwork and AbstractDecisionTree. This means that sub-learners used
by any meta-learner can be a Perceptron, a C4.5, a CART or an ID3. If you want another learning method
to be used as a sub-learner, add an implementation of SingleSupervisedLearner in its declaration and check its
instantiation in SingleLearnerFactory.

samplers package regroups classes used for sampling and combiners package regroups classes used for combining.

At the moment, three meta-learning models are implemented in DynNet. They are all classification methods:

e Arcing (Adaptatively Resample and Combine), that uses ArcingSampler for sampling and Majority Vote-
Combiner for combining

e Bagging (Bootstrap AGGregatING), that uses BaggingSampler for sampling and Majority VoteCombiner
for combining

e AdaBoost (ADAptative BOOSTing), that uses AdaBoostSamplerAndCombiner for sampling and com-
bining

4.2. DYNNET

<= interface =
SupervisedMethod
From frlovia cortex. ginnet. dyrnet methods)

i iy

from frlovia cortex. ginnet dynnet. methods)

<< interface =
Clas s ificationMethod

<= interface =
Re gress ionMethod
Jrom frilotia cortex. ginnet. dynnet. methods

[.\-\ |

From friloriaicorex: girnetidynnet methiodsientries)

== interface ==
Entries

| | #ertries
fr.Iéria.cor‘tex.ginnet.dynnet.metalearners|' | AN
1 1
] | .
! << abstract > -
| .
X AbstractMetaSupervisedleariier # I:aarners[] £ irterfare
: +rbLearners:int= 10 ! SingkSupervisedLearner
S |
s #regression;boolean :
i #random:Random
I #leamError:float ; +leamvoid
i #testError:float ! +testfwoid
\ #validationError:float [+getLe amErron):float
: 7 ! +get TestErrari:float
[] +get PredictedResult{pattem:int):Object
| Hfactory ! +get Typed:String
! ¥ campler
| |SnglkelearnerFadiory h zamplers
L << abstract >
! Abstract§ampler Foatstrap = ———
1
|
1
.
1
i #‘combilner
: . combiners
<= abstract = ECH inter;race == = 5
Abstract Class FicationMetzl ezrner (.hmlriner Majoriyvore Comb iner
L e
i) ')
1
1
models| | £
! ! -
| 1
bagging | boasting
1
] i q
Arcing Bagging ! AdaBoost
1
T T T T L T T
I_- S _I--_---“__I_____I-_--_---
1
ArcingSampler BaggingSampler AdaBoos tSamp krAnd Combiner
T T T
1] 1

e
4

- == abstract =&
AbstractStrategy

From friloria cortex. ginnet dynnet wiils. strategy?

Implemented by all

-1 potential sub-learners

e, AbstractSupervisedietnork
and AhstractDecisionTree

31

<= interface ==

ConoeteStrategy
From frolovia s corex ginmet sdvninet wils strategyl

Figure 4.12: Meta-learners class diagram

32 CHAPTER 4. TECHNICAL DESCRIPTION
4.3 GUI

GINNet is the main class and is GINNet frame. It’s a Singleton.

Figure is a screenshot of GINNet. We can see that GINNet frame is composed of a menu bar and zero or
more tabs. Here, current tab (active tab) is a network tab (an extension of AbstractMethodTab class), splitted
in two parts: main panel above and command panel below.

5 vro%
open Data Corpus Netweork Tree Meta-learner Result Help Screenshot Preferences
tabs (%) iris.data Data | [X) Classification Corpus | [X] Perceptron Network | (%] Result | (] Meta-learning | [x] Tree |
[l
L=| AbstractMethodTab
Hide
sepal length Target [ris-setosa
"
sepal width 0, 00| Target Iris-warsicolor
S o
petal length | 1,90 0, 00| Target Iris-virginica
L.
uetalwimh mainPanel
current
tab =
split
Perceptron
Initialization Error: Learn: 0,13 Validation: 0,18 Test: 0,14
Init ‘Rannnm - | Min: ‘ —1|:‘Z | marc | IH Reload best network e el S
Learning L
‘ Learn | Stopping function: Learning rate function:
— 0,55
[v] Test Time j max epoch: | 100»:[; Decreasing v| max time: | 1000|:;‘ final
[Validation S commandPanel
Error function: 0,32
Backpropagation: Momentum: U,DSE Classification |~
0,20}
[] J]
PR
Test Y0515 5 35 ™oz 75 s 101
®al O 101‘5? Save test tycle Cycle: 99 | Clear

Figure 4.13: A view of GINNet frame

Figure is an incomplete diagram of GUI architecture.
All graphical components are linked to GINNet main class. Tabs presented are attributes of GINNet and are
all commandable tabs available. (Commandable tabs are tabs with a command panel).

4.3.1 GINNet thread

GINNet treatments, and especially network display, require most process time. That’s why computations are
performed in a separated thread, the main Thread that runs in GINNet (called fr.loria.cortez.ginnet.gui. GINNet Thread).
This allow the user to click on ”Stop” button while learning for example.

N.B.: GINNetThread is a Singleton.

4.4. REMAINING PROBLEMS 33

fr. loria. cur‘tex.ginnet.gui|

GINMet

HWERSION StHing="1.2.5"
+dataTabTitle: StHng

GINNetThread

-stopped:boolean= true

+oompusTabTitle:ting e -Ia;tEpnu:h:int
+network TabTitle: St ring | - ginnet -mintest:float= Float.MAX VALUE
+treeTabTitle: String Hest:boolean=false
+treeToEnable Vedt ar +valid:boolean= false

-parent | _jastMethodTab:Strng -izGraphCommandPanel boolean

s - instanc -instance
tabz|t dataTab
DataTab
Abstract Corrnnrand able Thlr
- commandPanel
-active boolean
[commandpanels
+|cormpusTab Corpus Tab L’l
Ahbstract Cormenrand Fanel
Results Tab L
}resultsTah
+ retwork Tab
Net workTab
AhstractMethod Tak
h-mptalearne tTab | |MetalearnerTab =
-treeTab TreeTab

Figure 4.14: Partial GUI class diagram

4.3.2 Network command panels

Package fr.loria.cortex.ginnet. gui.commandpanels.networkcommandpanels manages all network command pan-
els. Command panels are displayed at the bottom of the frame and allow the user to interact with models.
Figure presents an UML overview of this package.

To implement a control panel for a network (or just to change one), you need to know what contains default
panels and where to add new elements. Figure shows AbstractNetworkCommandPanel parts.

Add new learning graphical elements only relative to a specific neural network type into personalLearnPanel.
Initializations and testing elements should be included into initPanel and testPanel.

4.4 Remaining problems

GINNet and DynNet architecture and code details still contain heaviness and programming awkwardness.
We try to list them below:

e All tabs are created in GINNet class during its initialization. This makes the code heavy.

34 CHAPTER 4. TECHNICAL DESCRIPTION

javaxswing Jransl <« inteface > <« interface
tr..gui.commandpans iz.Comma ndable java.ic.Serizlizakle

£

fr_loria cortex ginnet.g ai cgmmandpa nels. netwo ko dpanais

T
1
1
1
AbgiraciNehworkCommandPans

#¥initFanal ‘JPanel
#lezmPamel (Pzma|
#aftLeamPansl 3lPansl
#igenarzl earmPane| LRz el
#personallLearnPanel JPane|
#testFamal JJPanal

<< Ccreate > 4+ AbstzcthetmorkCommandPanmal [I:
#initizlize [jvoid

#initB tonPressed [e:ActionEvant j-woid

#ili i zafourathafwork () -void

#pamBattonP ressed (e:ActionEvent jvoid

apdateie arziNetwerk ([-veid

#testBationP ressad [e:ActionEvent jvoid

HiasiChne (b iH) veid

A Compel iveNstworkCommandPane! Pa rceptronComma nd Panel
#lastWinner :GraphNeawonNode

KehanenCommand Pansl MeuraKla=ommand Penel

KMeansCanmandPanel ANACommandPansl

Created with Paseldan far UML Cammunity Editlan. Nat far Cemmerclal Use.

Figure 4.15: Network command panels class diagram

Initialization
initPanel | [e | [sampte [~
Learning
— [Stopping function: Learning rate function:
| Learn generall eamPanel
) ITimer| maxEpoch | 100"—3 learningRate :
[Te —' i
learnPanel leftl eamPanel
personalLeamPanel
Test
testPanel | | Test | @ Al

Figure 4.16: Screenshot of an empty network command panel

Chapter 5

GINNet facilities

5.1 Changing DynNet or GINNet version

To edit DynNet version:
e Change the constant named VERSION in fr.loria.cortex.ginnet.dynnet.utils. DynNetConstants class

e Change the constant named DynNet.version in build.xml and DynNet.build files (in utils/ant directory)

To edit GINNet version:
e Change the constant named VERSION in fr.loria.cortex.ginnet.gui. GINNet class

e Change the constant named GINNet.version in build.zml and GINNet.build files (in utils/ant directory)

5.2 Implementing strategies

5.2.1 Strategy design pattern

Strategy design pattern defines a family of algorithms, encapsulates each one, and makes them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.

You can find a complete description at

http://www.dofactory.com/Patterns/PatternStrategy.aspx.

5.2.2 Strategies in GINNet

GINNet uses several strategies in different configurations.
For example, each neural network needs a stopping function to decide if learning is finished or not. Three
strategies are implemented for this stopping function :

e ErrorStoppingFunction stops the learning when given error is reached

o TimeStoppingFunction stops the learning after a given number of iterations

e PermutationStoppingFunction stops the learning when there are no more permutation (only for KMeans)
Other strategies concern learning rate functions, error functions, transfert functions, kernel functions, topology

functions, and so on.

5.2.3 How to implement strategies in GINNet

An easy way to implement those strategy and incorporate them dynamically in any Swing interface has been
set.

35

http://www.dofactory.com/Patterns/PatternStrategy.aspx

36 CHAPTER 5. GINNET FACILITIES

Ir. larin. cortex ginnet.dynnel, base. stoppingfundiong)
— — IFr laria cortes ginnet dyninel base srategy)|
At ractS topp- g Furr ot o
e AbstractSirategy
P} Al P tionii
miedels Errot Stopping Function Tirne 54 opping Function i
1
r = bl
-------E <= interface >
BT T Conarete Strategy I
i
,,,,, L < Sl +oet Type 0t ring ¥
| Permutationst opping Funet ion +getDescriptionic S ring .
~: :
A .4
A 5
L]
7 : re-usable clasies I
1 : 4
! I loriacorté . ginnet gui s rategypanels| /
i
ViEws

sappingfunchionPanel

{* Creates sopping function chaice panel =/ h A wing.jrane|
“sroppingFunciionfanel = nouw Strate gyPanel(
Abstract MoppingFunction class,
MmNmrdﬂMWﬂnpphﬂFqndlwﬂﬂﬁ,

,f‘ Mds l;hu'-g;lisumr',.f

AoppingFunctionPaned serChangelinererinew Changslistzner {
‘publicvold mateChanged{ChangeEvent & [
AoppinaFunctianChangsdie)

H.

* Called when fopping function is changed
T Bpamm g even
-
!
protected void stoppingfunctionChangediChan gs Bvent o) |
nelwark. setoppingFunction))) .)
i bsractStoppingFurictlonk s oppingFunctionPanel getSelectedStrategy i),
]

Figure 5.1: UML Diagram of stopping function strategy implementation

5.2. IMPLEMENTING STRATEGIES 37
Example

UML diagram of stopping function implementation example is given in figure

Strategies are defined by extending strategy classes and are totally independent from view.
A view can be created for any strategy thanks to generic StrategyPanel class. Java reflexivity is used to instan-
ciate concrete classes with default constructor (without parameters) and have access to strategies methods.

First step : Strategy implementations First, fr.loria.cortex.ginnet.dynnet.utils.strategy package gives a
structure for every strategy.

AbstractStrategy abstract class is a super-type for strategies and ConcreteStrategy interface is implemented
by each concrete kind of strategy.

In example, AbstractStoppingFunction is an AbstractStrategy and ErrorStoppingFunction, TimeStoppingFunc-
tion and PermutationStoppingFunction are ConcreteStrategy.

Abstract strategy defines common fields and methods for all strategies and especially at lest one abstract
method whose comportement depends on concrete implementations. For example, AbstractStoppingFunction
declares abstract method public abstract boolean stop().

To stop the network, strategies must have access to specific informations about associated neural network. So
AbstractStoppingFunction declares a field of type AbstractNeuramNetwork. (If this field was public, it will be
parametrizable in GUI).

Concrete strategies implement abstract method. The parameters of this method can not depend on
concrete strategies, so they have access to required informations thanks to common object: the neural network.
For exemple, TimeStoppingFunction stop() result will depend on the epoch field of the neural network, and
ErrorStoppingFunction on its errors.

Remind that concrete strategies must implement a default constructor.

Second step : View implementation Now, if you want to add a panel to select a network’s stopping
function, you will create a StrategyPanel object. To be instanciated, this object must specify

e its abstract strategy : the class AbstractStoppingFunction

e the list of available strategies: a List object
This list depends on network type (KMeans or not). So a method called public static List getStopping-
FunctionList() has been defined in AbstractNeuralNetwork to get the list of available concrete strategies.
This method is overridden in KMeans class.

e the name/type of default strategy selected : for example ” Time”
And you need to listen to strategy change events by setting a change listener.

The resulting panel is in figure and

rStopping function:

_Tifne + | maxEpoch 100',—'3'
Time.
Error

Figure 5.2: A screenshot of stopping function panel

Fields displayed are all public fields of ConcreteStrategy class, retrieved thanks to Java reflexivity. So don’t
add a public attribute to a strategy class (abstract or concrete) if you don’t want it to be displayed on strategy
panel.

Current supported field types are int and float, but FieldPanel class can be completed to edit String or other
objects.

When adding a new strategy, you should be aware of compilation requirement, and compile all concrete strate-
gies subsclasses (for example by adding a new line to make_ginnet.csh).

38 CHAPTER 5. GINNET FACILITIES

Stopping function:

Error v | minError O.EDC@::I'

Figure 5.3: A screenshot of stopping function panel with another strategy selected

5.3 Progress bar

fr.loria.cortex. ginnet.dynnet.utils.task package provides two classes useful if you need to perform a long task
and know that GUI may want to display a progress bar during computation.

Figure gives an example of utilisation when computing a corpus’ matrix correlation, that could take from
less than one second to several hours.

fr.loria.corex: ginnet. dynnet tools task)
LongTask . <= interface ==
- taskDisplayer LongTaskDisplayer
=< create =>+LongTask(:LongTazk
+updatebe ssagefparam L Stringyvoid +itpdateie ssageiparam L Stringhvold
+zetTazkManageriparaml Long TaskiNsplayerivoid +disposefivoid
+updateProgress{paraml:intyvoid +displayiparamIntl void
A +updataFragressiparamIintivoid
Py
!
1
1
PCA LongTaskDRlog
(from frloria: cortex ginnet: dyrnet. corpust ‘from frolora;cortex: ginret: gui: dialogs?

=< create =>+LongTaskDialog{paraml:String): LongTaskDialog

- pca

i P +updatehe szageiparam L Stringyvoid
1 +dizposedvaid

i +dizplayiparaml:intyvoid

* Creates the linear correlation matrix, <-- a big taskl +updateProgress{param Lint)void

L

public void computeCarrelationt at i { -taskManager

updatemessagef Correlation matrix creation”); VisitorGUl

updateProgress(intiipe reentage * 1003); (from frlora: cortex: GIRRet: visitor)

b
1

J Create and display task manager

taskManager = new LongTaskDialog! Com puting 2D projection');
prasetTaskManageritaskManagery

Thread thisThread = new Thread(thish;

thisThread. start {;

ifftaskManager = null) {

taskManager display{1000%

i

Created with Poseidon for UML Community Edition. Mot for Commercial se

Figure 5.4: An example of long task computation and display

5.4. TESTS 39
5.4 Tests

5.4.1 Test cases

Test cases are classes used to automatically verify class comportments. They are all regrouped in package

tests. This package is not available on GForge releases, but you can ask for it (to Laurent. Bougrain@loria.fr or

Marie. Tonnelier@loria.fr).

Those tests use the JUnit framework, and are easy to read and to test. JUnit main page is http://www. junit.org,

you could also find a getting started with JUnit guide at http://junit.sourceforge.net/.

Ideally, every developper should add test cases for new features implemented. Read ”JUnit Test Infected:

Programmers Love Writing Tests” (at http://junit.sourceforge.net/doc/testinfected/testing.htm).
Eclipse provides utils to easily use JUnit test case.

How to launch a test case in command line?

JUnit provides test runners to run test cases. You can use graphical test runner (junit.swingui. TestRunner) or
text test runner (junit.textui. TestRunner). Just pass the name of the test case to test as a parameter like this:
java -cp bin:ginnet/lib/junit.jar junit.swingui. TestRunner tests.tom. TOM Test

5.4.2 Extreme programming

See http://extremeprogramming.org/ (or in french at http://extremeprogramming.free.fr/).

http://www.junit.org
http://junit.sourceforge.net/
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://extremeprogramming.org/
http://extremeprogramming.free.fr/

40

CHAPTER 5. GINNET FACILITIES

Chapter 6

External tools

6.1 SubVersion

This chapter quickly explains how to work with SubVersion on command-line.
To perform svn commands, you need a subversion client installed on your computer, and you must work in
subversion working directory (which contains .svn folder).

6.1.1 SubVersion notation

In SubVersion messages, a letter is displayed before name of files or folders described.
Actions refers to repository modification (in case of commit for example) or to your working copy (in case of
checkout for example).

e A means that the file has been Added.
e U means that the file has been Updated.

D means that the file has been Deleted.

e M indicates that the file has been Modified.

e R means that the file has been Replaced (i.e. old version has been deleted and a new one with the same
name has been added)

e G indicates that the file has received new changes, while original file contained other modifications. But
those two types of changes don’t overlap each other and SubVersion has merGe the files.

C means that a Conflict happened. Changes have been made on the two (or more) files and SubVersion
can’t merge them. So this conflict must be resolved by you.

6.1.2 How to get a local copy of last GINNet?
If you have no local copy

You want to get complete tree of the SubVersion referentiel into your local workspace.
Go to the folder in which you want to get ginnet folder and execute checkout command: svn checkout
sun+ssh://developername@scm.gforge.inria.fr/svn/ginnet

If you already have a local copy

You want to get last changes made on GINNet.
Use update command to synchronize your working copy with most recent version of the repository : type svn
update

41

42 CHAPTER 6. EXTERNAL TOOLS
6.1.3 How to modify arborescence?

Following actions won’t be effective on repository until you commit changes and only file deletion is immediatly
made on your working copy.

e If a file has been modified, SubVersion will detect it automatically and you have nothing to do.
e If you want to add a file, use svn add foo. If foo is a folder, all its content will be added recursively.

e To delete a file or a folder and all its content, use svn delete foo.
Notice that deletion is not definitive, as SubVersion keeps history of the repository and allow you to come
back to an older revision.

e svn copy foo foobar will create a new element named ” foobar” as a copy of ” foo” file or folder and its
history will be kept by SubVersion.

e svn move foo foobar is equivalent to svn copy foo foobar; sun delete foo and so history is kept too.

e Use svn revert foo to cancel operation planed for foo.

6.1.4 How to see changes between 2 versions?
How to get information about revision?

e The command svn log gives log messages associated with revisions and modified path for all revisions.
e svn cat --revision REVISION_.NUMBER will display a file as it was with given revision number.

e The command svn list --revision REVISION_.NUMBER foo lists files in folder foo at given revision
number.

How to see changes between your local version and repository?

e svn status is probably the most used SubVersion command.
Used without argument, this command will detect all modifications made on your working copy.
Here are the meanings of sun status letter code:
— Common notation is described here :
— L foo: SubVersion has a lock on file foo.
— 2 foo: foo is not managed by SubVersion.

— ! foo: SubVersion manages foo, but it is missing or incomplete.
This can happend if you interrupt a checkout or an update. In this case, use svn update or svn revert.

— A + foo: foo has been added with its original log.
— M + foo: foo has been added with its log and modified locally.

e svn diff command details changes made on each file, using diff format.
So added lines are preceeded by + and deleted lines by -. This command displays also name of modified
files and shifting information.

How to see changes between your local version and last SubVersion version?

Use command: svn diff - -revision 0

6.1.5 How to put local version on the repository

It is wiser to verify changes made between your working copy and the repository before commiting them. To

do this, see chapter below.

And don’t forget to use sun add, svn delete, sun copy or sun move to change folders or files status.

To put registred changes into the repository, use this command: svn commit --message "message_describing_changes_commited”
If you don’t type any commit message, SubVersion will try to load your default text editor.

6.2. ANT 43

6.1.6 How to resolve conflicts?

You can detect conflicts via svn status. Conflicted files are labelled as C. This means that server changes and
your changes intersect and that you will have to decide which changes to keep.
Each time that there is a conflict, three events happen to help you to study and resolve it:

e SubVersion displays a C during update and remember that this file is in a conflicted state.

e SubVersion places conflict marks - specific characters delimiting conflicted areas - in the concerned file,
in order to emphasize them.

e For each conflicted file foo.ext, SubVersion places three additional files in your working copy:

foo.mine: This is your file before update.
foo.rOLD_REVISION: This is your file before you change it.

foo.rNEW_REVISION: This is the last version on the server of the conflicted file (without your
changes).

A conflicted file can’t be commited as long as those three temporary files are not removed.
So if you have a conflict, you can:

e Merge the files manually,
e or copy one of the temporary files into your working file,
e or execute svn revert foo.ert command, to undo changes.

Once a conflict is resolved, you have to inform SubVersion by the command: svn resolved foo.ext and this will
remove the three temporary files.

6.2 Ant

Apache Ant (http://ant.apache.org/) is a software tool for automating software build processes. It is similar
to make but is written in the Java language and is primarily intended for use with Java. Contrary to make,
Ant is portable.

The most immediately noticeable difference between Ant and make is that Ant uses a file in XML format to
describe the build process and its dependencies, whereas make has its own Makefile format. By default the
XML file is named build.xml.

6.2.1 How to launch Ant build

Where to find Ant First, Ant program must be installed on your computer. You can find it on Ant web
page or at LORIA in tools directory of CORTEX team (the executable is /users/cortex/tools/apache-ant-
1.6.5/bin/ant.

How to run Ant To run Ant script on command line, just type ant. By default, this will run build.xzml
file and run the target specified in the default attribute. If you want to run another targets, specify them as
arguments.

You can also set properties on the command line. This can be done with the -Dproperty=value option, where
property is the name of the property, and value is the value for that property.

6.2.2 How to launch GINNet and DynNet Ant build from anywhere

To run GINNet and DynNet Ant build file from any console, executes this command from ginnet directory :
ant -lib utils/ant /jsch-0.1.28.jar -lib lib/junit.jar -f utils/ant /build.xml -DGINNet.jar.password=thefamouspassw
-Dusername=yourSSHusername -Duserhome=yourhomedirectory -Dpassphrase=yourpassphrase
” first target”[” second target” ...]

NB: On Linux, you can alias Ant command by executing this command: alias ant2="ant -lib utils/ant/jsch-
0.1.28.jar -lib lib/junit.jar -f utils/ant/build.xml -DGINNet.jar.password=thefamouspassword -
Dusername=yourSSHusername -Duserhome=yourhomedirectory -Dpassphrase=yourpassphrase’
Then you only have to type ant2 » first target” | ” second target” ...]

http://ant.apache.org/

44

CHAPTER 6. EXTERNAL TOOLS

Some explanations :

the first option -lib utils/ant/jsch-0.1.28.jar specifies that Ant must use JSch (Java Secure Channel)
library. This library is needed to perform scp tasks.

the second option -lib lib/junit.jar specifies that Ant must use JUnit library. This library is needed to
perform tests.

the third option -f utils/ant/build.xml specifies the XML build file to use.

the option -DGINNet.jar.password=thefamouspassword specifies the password of GINNet.jar and
is used when creating this jar.

the option -Dusername=yourSSHusername specifies your username on InriaGForge and is used when
performing scp tasks.

the option -Duserhome=yourhomedirectory specifies your current home directory and is used when
performing scp tasks in order to access to your SSH public key.

the option -Dpassphrase=yourpassphrase specifies your passphrase on Inria GForge and is used when
performing scp tasks. If you have no passphrase, just forgot this option.

last arguments are targets. This Ant script provides many targets. To know which targets are available,
see target names specified between <target> tags in the build file, they are all explained in description
attribute. The most used targets are :

— ”make all” : Compiles DynNet and GINNet, create jars and launches GINNet.jar

— ”launch GINNet” : Compiles and launches GINNet

— ”jar DynNet” : Makes DynNet.jar

— ”jar GINNet” : Makes GINNet.jar

— ”javadoc all” : Makes DynNet and GINNet JavaDoc

— ”scp GINNet.jar” : Copies GINNet.jar to GINNet web site

— ”make guide” : Compiles guide and creates guide.pdf file

— ”test” : Compiles and runs all GINNet JUnit tests ; Results are saved in text files in testresults
directory

— ”zip GINNet” : Creates a zip file containing GINNet source code

— etc.

6.2.3 How to launch GINNet and DynNet Ant build from Eclipse IDE
To run Ant build file from Eclipse IDE, see section

6.2.4 For more informations about Ant

You can find the official Ant user manuel at this address: http://ant.apache.org/manual/index.html.

http://ant.apache.org/manual/index.html

6.3. ECLIPSE 45
6.3 Eclipse

Eclipse is a complete Java development tool (see http://eclipse.org for more informations).

Version 3.0.1 is installed in CORTEX tools.

You need to create a workspace directory into your home (so that all developpers can work separately on the
same Eclipse application).

Launch Eclipse with this command (from LORIA): /users/cortex/tools/eclipse/eclipse -data workspace_directory

6.3.1 First steps

Project creation

1. First step: Working copy checkouting
As last GINNet version is under SubVersion repository, you'll have to check out a local copy of it, using
command line.

Open a console.
Create a new folder, called ”GINNet”, into your workspace and then go into it.

Execute command svn checkout sun+ssh://developername@scm.gforge.inria.fr/svn/ginnet (Where
developername is replaced by your GForge login)

A new folder has been added to project folder. It is called ”ginnet” and will be your SubVersion
local copy (the working folder where to perform svn commands)

2. Second step: Java project creation
Now you need to create a new Java project in Eclipse IDE.

Launch Eclipse.
Menu: "File” — ”"New” — ”Project...”

”"New Project” window appears.
Choose ”Java Project” in wizard list and then click ”Next >”
"New Java Project” window appears, as shown in figure

Enter project name: ”GINNet” (exactly the same name than folder previously created) and then
click on ”Finish >”

£ (=3

Create a Java project g J

Create a Java project in the workspace or in an external location i’

Project name: [GINNet
Contents -
@ Create new project in workspace

(' Create project frem existing source

Directory: |fusersfcortexftonneliefworkspace eclipse/Gl

DK Compliance

& Us ult compiier compliance (Currently 1.4)

(I Use a project specific compliance: (1.4 W
~Project layout:

@ Use praject folder as root for sources and class files

i Creat:

eparate solrce and output folders

The specified external location already exists If a project is created in this
location, the wizard will automatically try to detect existing sources and
class files and configure the classpath appropriately.

=< Back ‘ Next =] Finish Cancel]

Figure 6.1: A screenshot of GINNet project creation window

Now project should compile without error and you can start working...

http://eclipse.org

46

CHAPTER 6. EXTERNAL TOOLS

Refactoring

To refactor means to improve a computer program by reorganising its internal structure without altering its

external behaviour.
Eclipse provides powerfull refactoring tools.

6.3.2 Ant build
An Ant script, called build.zml is provided with GINNet. To find it see section

Run build.xzml

To run build.zml :

Select it in the package explorer.
Left click and select ”Run As” menu and then ” Ant Build...”.
Select in the list targets that you want to run, as shown in figure

Click on "Run” button. Execution informations will appear in the Eclipse console.

& GINNet build xml

Modify attributes and launch.
Run an Ant buildfile

(Bl ga R0 [GINMet build xml|

DMa‘iﬂl rg;&hﬂefresh] _;_-,,:Tnﬂuﬁd v Targets | “4,Classpath | >Properties I.%JRE_l REnvimnmetﬂ:‘I [ICommon

Check targets to execute:

Name | Description

O @& init Initializes build directory

D‘&make all [default] Compiles DynNet and GINNet, create jars and launches GINNet jar
O @ compile DynNet Compiles DynNet Java code

[0 @ compile GINNet Compiles GINMet Java code

[@ launch GINNet Launches GINNet

O @ license Copies license files to build directory

O @ jar DynNet Makes DynMet jar

|:|'§'jar GINNet Makes GINNet jar

o@® genkey Generates store file for GINNet jar
15 e Gietior ——anchesamterr
' @ javadoc all Makes DynNet and GINNet JavaDoc

[@ javadoc DynNet Makes DynNet JavaDoc

0@ javadoc GINNet Makes GINNet javaDoc

@ clean Cleans build directory

O @scp all Updates GINNet web site with new jar and |JavaDoc

[1® scp GINNet jar Copies GINNet jar to GINNet web site

[0 ® scp DynNet javadoc Copies DynNet JavaDoc to GINNet web site

o = U W O e~ SO Y=Y D07 W AU GO S~ 1 Yy O L

2 out of 25 selected

[” Sort targets
[Hide internal targets not selected for execution

Target execution order

javadoc all, launch GINNet jar ﬁ Order... |

[»]

Figure 6.2: A screenshot of Ant file window where two targets are selected

6.3. ECLIPSE a7

As we have seen in section GINNet and DynNet Ant build file needs JUnit and JSch libraries to run all
targets. You can configure Eclipse so that it uses those two libraries for Ant build. To do this, go to " Window”
menu, ”Preferences...”, ” Ant”, ”Runtime”, ” Classpath”, ” Ant Home Entries” and click on ”Add jars” button,
select lib/junit.jar and wutils/ant/jsch-0.1.28.jar and validate.

Configure project builder

You can also configure your project so that build.xml file will be used as the project builder, when you use
build and clean feature of the IDE. To do this:

e Select your project in the package explorer.

e Left click and select ”Properties” menu. Project property window appears.

Select ”Builders”. By default, project only contains ” Java builder”.

Click on ”"New...” button. Then select ” Ant Build”.

e Enter a name for this builder.

In "Main” tab, set the build.xml file as the Buildfile.

[]
@ Properties for GINNet and DynNet builder (X
Edit launch configuration properties [9.
Create a configuration that will run an Ant buildfile during a build. *._._,—T

[\Ela Ml IGINNet and DynNet builde

4 (] Main I - Refresh | i Targets | '\ Classpath | <> Properties | = JRE | 75 Environment [¥

Buildfile

|s{workspacajuc:IG\NNab‘gmnet}ut\\sfantfbuwld.xml}

EBrnwssWorksEaca Browse File Systerm] Variables J

Base Directory

Browse Workspace]Bmwseﬁ{esystem J Variables J

Arguments:

[Set an Input handler

/\H-.\L,- Revert
oK Cancel

e In "Targets” tab, select corresponding tasks for all actions, by clicking on ”Set Targets...” buttons:

— After a ”Clean”: unselect all targets.
— Manual Build: select ”compile GINNet” (or ”compile DynNet”) target.
— Auto Build: select ”compile GINNet” (or ”compile DynNet”) target.

— During a ”Clean” select "clean” target.

48

CHAPTER 6. EXTERNAL TOOLS

& Properties for GINNet and DynNet builder (X
Edit launch configuration properties B.
Create a configuration that will run an Ant buildfile during a build @

[LEls =3 |GINNet and DynNet buildes

= Iuainl 71 Refresh i Targetsj

After a "Clean”:

. Classpath | = Properties | = JRE | 75 Environment |>

icBulIder is not set to run for this build kind>

Manual Build:

i:omp\le GINNet

‘E Set Targets
@ Set Jargets...

Auto Build:

icomp\le GINNet

1
Set Targets...

LDl

During a "Clean”:
|clean

@ Set Targets

i

Apply. Revert

e Click on ”OK” button.

e Finally move up this new builder and click on ”OK” button.

€ Properties for GINNet

¥pe filter text W Builders

Info

Java Build Path
I» Java Code Style

[7] s Java Builder

> Java Compiler
Javadoc Location
Omondo Profiles

Project References

| Configure the builders for the project:
Builders | = =

GINNet and DynNet buildi

Import
Edit...

Remove

Down

i s

T —

OK I Cancel

6.3.3 Profiler

Eclipse Profiler Plugin is already installed for Eclipse.
Jusers/cortex/tools/eclipse3.0/eclipse directory).

Click on main class to select it.
Run — "Run as” — ”Profiler”
If profiler view doesn’t open:

— "Window” — ”Open Perspective” — ”Other...”
— Select ”Profiler”

Don’t forget to start profiling.

It works with version 3.0 of Eclipse (available in

This profiler is incorporated into IDE and easy to use. You can quickly get informations on packages, classes
and methods calls or ressources taken. Use it to optimize your code! :)
More informations on Eclipse profiler plugin installation and use at
http://eclipsecolorer.sourceforge.net/index_profiler.html,

http://eclipsecolorer.sourceforge.net/index_profiler.html

6.4. UML TOOLS 49
Linux installation To install eclipsecolorer plugin into Eclipse:

e Download profiler_linux.tgz on
http://sourceforge.net/project/showfiles.php?group_id=48823&package_id=71547,

e Untar it (tar zvzf profiler_linuz.tgz)

e Compile and add library:

Edit m file and change JDK path to your JDK path
Execute it
— Copy libProfilerDLL.so generated file into lib/i386/ directory of your JRE

— Copy it also into eclipse plugin directory

e Download ru.nimk.eclipse.plugins.profiler zip file (at the same address)
e Unzip it
e Copy it into Eclipse plugin directory

e Relaunch Eclipse and enjoy!

6.4 UML tools

6.4.1 Poseidon

UML modeling software used for GINNet project is Poseidon for UML (http://gentleware.com/), an exten-
sion of ArgoUML, complete but slow, developped in Java.

A free version, called Community Fdition is available for non commercial use. Version 4.1-0 is installed in
CORTEX tools disk space. If needed, update evaluation key.

Launch it with this command (from LORIA):
Jusers/cortex/tools/Poseidon_For_-UML_CE_4.1/Poseidon_For_ UML

6.4.2 EclipseUML

EclipseUML (http://www.omondo.com/) is an UML plugin for Eclipse, developped by Omondo.
Free version is installed in CORTEX Eclipse version, but it is not considered has suitable for GINNet project.

http://sourceforge.net/project/showfiles.php?group_id=48823&package_id=71547
http://gentleware.com/
http://www.omondo.com/

50

CHAPTER 6. EXTERNAL TOOLS

Chapter 7

Frequently Asked Questions

If you have questions or suggestions about GINNet or this document, ask Marie.Tonnelier@loria.fr

e Is neural network library independent from view?
DynNet regroups all neural network models. As shown in figure they are totally independant from
GUI. So you can use only DynNet and, for example, display results on console, without lauching GINNet
interface. Packages gui depends on dynnet, but dynnet doesn’t depend on gui.

e How can I see weight values in GUI?
You can see Perceptron weight values in Network view.
When links between layers are simple (only one red arrow), left-click on a neuron to display only connec-
tions relative to this neuron. Move the mouse upon a connection to see an help bubble (tool tip) with
available informations (weight, delta and saliency), as shown in figure

" GINNet (Graphical Intarface for Neural Networks & co) L=l x]
'lGINNet Edit Data Corpus Network Tree Help
rpus Canfu nattix | [X] Perceptron Network |
Gc
sepal length 0.00| Iris-setosa

G

= sepal width |2,00]
Hide petal length
1,80

petal width

=)
"
=

Iris=wersicolor

A o
alue: -0.41476622 | 2NC&
Delta: 0.0

Saliency : 0.0

Figure 7.1: A screenshot of a connection view

Then, if you right-click, fully connected view is displayed and connections relative to previously selected
neuron are still displayed with tool tip.

o1

	Abstract
	First steps
	GINNet and DynNet
	Java
	Why is GINNet developped in Java?
	Where to find JRE and/or SDK

	Charter
	Some descriptive informations
	GForge
	Forums
	Tracker
	Tasks
	Docs
	News
	SCM
	Files

	How to compile and run GINNet from sources?
	Architecture
	Directories
	Packages

	Neural network concepts
	Corpus
	Neural network categories
	Variable categories
	Corpus members

	Competitive networks
	Description
	Quantification and classification
	Comparison of competitive networks

	Variable selection

	Technical description
	Overview
	DynNet
	Corpus
	Data-mining methods
	Neural networks
	Supervised networks
	Competitive networks
	Decision trees
	Meta-learners

	GUI
	GINNet thread
	Network command panels

	Remaining problems

	GINNet facilities
	Changing DynNet or GINNet version
	Implementing strategies
	Strategy design pattern
	Strategies in GINNet
	How to implement strategies in GINNet

	Progress bar
	Tests
	Test cases
	Extreme programming

	External tools
	SubVersion
	SubVersion notation
	How to get a local copy of last GINNet?
	How to modify arborescence?
	How to see changes between 2 versions?
	How to put local version on the repository
	How to resolve conflicts?

	Ant
	How to launch Ant build
	How to launch GINNet and DynNet Ant build from anywhere
	How to launch GINNet and DynNet Ant build from Eclipse IDE
	For more informations about Ant

	Eclipse
	First steps
	Ant build
	Profiler

	UML tools
	Poseidon
	EclipseUML

	Frequently Asked Questions

